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Sequences and Limits
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� A sequence of real numbers can be viewed as a set of numbers 
, which is often also denoted as         or 

� A sequence        is increasingif                                    . If 
then we say that the sequence is nondecreasing. Similarly, we 
can define decreasingand nonincreasingsequences. 
Nonincreasing and nondecreasing sequences are called 
monotone sequences. 

� A number            is called the limit of the sequence        if for 
any positive    there is a number K (which may depend on    ) 
such that for all           ,                    . In this case, we write 

or 

� A sequence that has a limit is called a convergent sequence. 



Sequences and Limits
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� A sequence in Rn is a function whose domain is the set of 
natural numbers 1, 2, …, k, … and whose range is contained in 
Rn. We use the notation                     or          for sequences in 
Rn.

� For limits of sequences in Rn, we need to replace absolution 
values with vector norms. In other words,      is the limit of 
if for any positive    there is a number K such that           , 

. 

� If a sequence           is convergent, we write                          or 
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� Theorem 5.1: A convergent sequence has only one limit. 

� A sequence          in Rn is boundedif there exists a number 
such that                  for all 

� Theorem 5.2: Every convergent sequence is bounded. 

� For a sequence         in R, a number B is called an upper bound
if             for all                . In this case, we say         is bounded 
above. 

� A number B is called an lower boundif             for all                . 
In this case, we say         is bounded below.
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� Any sequence         in R that has an upper bound has a least 
upper bound(also called the supremum), which is the smallest 
number B that is an upper bound of        . Similarly, it has a 
greatest lower bound (also called infimum). 

� If B is the least upper bound of the sequence        , then             
for all    , and for any         , there exists a number K such that 

� If B is the greatest lower bound of        , then             for all    , 
and for any         , there exists a number K such that 

� Theorem 5.3: Every monotone bounded sequence in R is 
convergent. 
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� Given a sequence           and an increasing sequence of natural 
numbers         , the sequence

is called a subsequenceof the sequence          . 

� Theorem 5.4: Consider a convergent sequence           with 
limit      . Then any subsequence of           also converges to    . 

� It turns out that any bounded sequence contains a convergent 
subsequence (Bolzano-Weierstrass Theorem)



Sequences and Limits

7

� Consider a function                    and a point             . Suppose 
that there exists      such that for any convergent sequence 
with limit     , we have 

Then, we use the notation                    to represent  

� It turns out that    is continuous at      if and only if for any 
convergent sequence          with limit     , we have 

� Therefore, using the notation introduced above, the function     
is continuous at      if and only if 
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� We say that a sequence         of            matrices converges to the 
matrix     if                                . 

� Lemma 5.1: Let                . Then,                           if and only if 
the eigenvalues of     satisfy  

� Lemma 5.2: The series of          matrices  

converges if and only if                        . In this case the sum of 
the series equals 
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� A matrix-valued function                       is continuous at a point 
if                                         . 

� Lemma 5.3: Let                       be an          matrix-valued 
function that is continuous at     . If             exists, then           
exists for    sufficiently close to      and            is continuous 
at     .  



Differentiability
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� Differential calculus is based on the idea of approximating an 
arbitrary function by an affine function. 

� A function                     is affine if there exists a linear 
function                    and a vector             such that 

for every 

� Consider a function                     and a point             . We wish 
to find an affine function     that approximates     near the point 

� First, it is natural to impose the condition
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� Because                          , we obtain 

� By the linearity of    , 

� Hence, we may write

� Next, we require that          approaches         faster than     
approaches     ; that is, 

� The conditions ensure that     approximates    near     in the 
sense that the approximation error is “small” compared with 
the distance of the point from     . 
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� In summary, a function                                is said to be 
differentiableat            if there is an affine function that 
approximates     near     ; that is, there exists a linear function 

such that 

� The linear function    is determined uniquely by    and      and is 
called the derivativeof    at     . 

� The function is said to be differentiableon     if     is 
differentiable at every point of its domain    . 



Differentiability
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� In , an affine function has the form           , with             . 
Hence, a real-valued function        of a real variable     that is 
differentiable at      can be approximated by a function

� Because                                    , we obtain

� The linear part of        , denoted by         earlier, is just     . The 
norm of a real number is its absolute value, so by the definition 
of differentiability



Differentiability
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� The number     is commonly denoted          and is called the 
derivative of     at     . 

� The affine function      is therefore given by 

� The affine function is tangent to     at     . 



The Derivative Matrix
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� Any linear transformation from Rn to Rm, and in particular the 
derivative     of                     , can be represented by an 
matrix. 

� To find the matrix    of the derivative    , we use the natural 
basis                      for Rn. Consider the vectors

By the definition of the derivative, we have 

This means that 
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� But        is the jth column of the matrix    . The vector     differs 
from     only in the jth coordinate, and in that coordinate the 
difference is just the number t. Therefore, the left side is the 
partial derivative 

� Because vector limits are computed by taking the limit of each 
coordinate function, it follows that if 

then                               and the matrix     has the form 
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� The matrix     is called the Jacobian matrix, or derivative 
matrix, of    at     , and is denoted            . 

� For convenience, we often refer to             simply as the 
derivative of at     . 

x

y

f(x,y)
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� Theorem 5.5: If a function                     is differentiable at     , 
then the derivative of at      is determined uniquely and is 
represented by an            derivative matrix            . The best 
affine approximation of near      is then given by 

in the sense that 

and                                           . 
The columns of the derivative matrix             are vector partial 
derivatives. The vector           is a tangent vector at      to the 
curve     obtained by varying only the jth coordinate of   . 
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� If                    is differentiable, then the function        defined by 

is called the gradientof . 

� Given                  , if       is differentiable, we say that     is twice 
differentiable, and we write the derivative of       as 

represents taking the partial derivative with respect to      
first, then with respect to 



The Derivative Matrix

20

� The matrix             is called the Hessian matrix of    at    , and 
is often also denoted         . 

� A function                              , is said to be continuously 
differentiableon     if it is differentiable (on    ) , and                         
is continuous; that is, the components of    have continuous 
partial derivatives. In this case, we write           . If the 
components of    have continuous partial derivatives of order    , 
we write           . 

� The Hessian matrix of a function                   at     is symmetric 
if is twice continuously differentiable at    . This is a well-
known result from calculus called Clairaut’s theoremor 
Schwarz’s theorem. 
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� Consider the function 

Compute its Hessian at the point 

� Start with 

Note that 



Example

22

� We next compute

� Therefore, the Hessian evaluated at the point                 is 
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� The chain rule for differentiating the composition           , of a 
function                  and a function 

� Theorem 5.6: Let                  be differentiable on an open 
set             , and let                      be differentiable on        .  
Then, the composite function                       given by                      
is differentiable on         , and 
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� Product rule: Let                     and                     be two 
differentiable functions. Define the function                   by 

. Then is also differentiable and 

� Some useful formulas: Let                 and             , the 
derivative with respect to 

� If            , then 

� If     is a symmetric matrix, then                            . In particular, 
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� The level set of a function                   at level    is the set of 
points                             . For                  , we are usually 
interested in    when it is a curve. For                 , the sets     
most often considered are surfaces. 

� Example: Consider 
It is called Rosenbrock’s function. 

Rosenbrock’s function

Level sets at levels 0.7, 7, 70, 200, and 700
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� A point      is on the level set    at level means that               . 
Suppose that there is a curve     lying in    and parameterized by 
a continuously differentiable function                  . Suppose also 
that                 and                        , so that     is a tangent vector 
to     at     . 

� Applying the chain rule to the function 

Since     lies on , we have 

That is,     is constant. Thus, 
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� Theorem 5.7: The vector             is orthogonal to the tangent 
vector to an arbitrary smooth curve passing through      on the 
level set determined by 

� It is natural to say that              is orthogonalor normal to the 
level set corresponding to     , and to take as the tangent 
plane (or line) to    at      the set of all points     satisfying 
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� is the direction of maximum rate of increaseof at 

� The direction of maximum rate of increase of a real-valued 
differentiable function at a point is orthogonal to the level set 
of the function through that point. 

� An example about 
� The curve on the surface running from 

bottom to top has the property that its 
projection onto the (x1, x2)-plane is 
always orthogonal to the level curves 
and is called a path of steepest ascent. 
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� The graph of                    is the set                                           . 
The notion of the gradient of a function has an alternative 
useful interpretation in terms of the tangent hyperplane to its 
graph. 

� Let              and                . The point                         is a point 
on the graph of   . If    is differentiable at    , then the graph 
admits a nonvertical tangent hyperplane at                    . The 
hyperplane through    is the set of all points 
satisfying the equation 

where the vector                              is normal to the hyperplane. 

normal a vector on the hyperplane



Level Sets and Gradients

30

� Assuming that this hyperplane is nonvertical (that is,         ), let

Thus, we can rewrite the hyperplane equation as  

� We can think of the right side as a function                  . Observe 
that for the hyperplane to be tangent to the graph of   , the 
functions    and    must have the same partial derivatives at the 
point      . Hence, if    is differential at     , its tangent 
hyperplane can be written in terms of its gradient, as given by 
the equation 
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� Theorem 5.8 Taylor’s Theorem: Assume that a function                 
is     times continuously differentiable (i.e.           ) on an 
interval        . Denote 
Then, 

(called Taylor’s formula) where      is the ith derivative of , 
and 
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� An important property of Taylor’s theorem arises from the 
forms of the remainder       . 

� We introduce the order symbols,     and    . 

� Let    be a real-valued function defined in some neighborhood 
of            , with               if          . Let                   be defined in a 
domain              that includes    . Then, we write 
� 1.                            to mean that the quotient                         is 

bounded near     ; that is, these exist numbers             and           such 
that if               ,            , then                                  or  

� 2.                           to mean that 



Taylor Series

33

� The symbol              [read “big-oh” of        ] is used to represent 
a function that is bounded by a scaled version of    in a 
neighborhood of    . 

� Examples: 
�

�

�

�
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� On the other hand,              [read “little-oh” of         ] represents 
a function that goes to zero “faster” than         in the sense that 

� Examples: 
�

�

�

�
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� Note that if                       , then                          (but the 
converse is not necessarily true). Also, if                         , then 

for any 

� Suppose that            . Recall that the remainder term in Taylor’s 
theorem has the form 

Substituting this into Taylor’s formula, we get

By the continuity of       , we have                                   as 
that is,                                           . Therefore, 
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� We may then write Taylor’s formula as 

� If, in addition, we assume that , we may replace the 
term           above by 
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� Theorem 5.9 Mean value theorem: If a function                    is 
differentiable on an open set             , then for any pair of 
points              , there exists a matrix such that 

� The mean value theorem follows from Taylor’s theorem (for 
the case where           ) applied to each component of    .      is a 
matrix whose rows are the rows of        evaluated at points that 
lie one the line segment joining     and    . 

a bc

若函數f(x)在[a,b]區間上連續並可維分，
則在該區間內必存在一點c，使


