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Sequences and Limits

» A seguence of real numbers can be viewed as a set of numbers
{@1,29,..., 1, ...}, Which Is often also denoted s}  {on:,

» Asequencér;} 1acreasingif o, <z, < <ap <o LM <2
then we say that the sequencaasdecreasingSimilarly, we
can definadecreasingandnonincreasingseguences.
Nonincreasing and nondecreasing sequences are called
monotone sequences

» Anumberz* ¢ R is called thienit of the sequencg;,} if for
any positive: there is a numbd€fwhich may depend oa )
such that for alk ~ Kk |z —2*| <e . In this case, we write

o' =limpseexr OF 2 — 2

» A seguence that has a limit is calledasvergent sequence



Sequences and Limits

» A seguence IR is a function whose domain is the set of
natural numbers 1, 2, .k, ... and whose range is contained in
R". We use the notatigaV, 2® ...} {8k} for sequences in
R".

» For limits of sequences R, we need to replace absolution
values with vector norms. In other words, is the limjk6f}

If for any positive: there is a numdeisuch thatt > K
lz®) — ¥ < e.

» If a sequencéx®} is convergent, we write lim;_, . 2 or
zF) — g



Sequences and Limits

» Theorem 5.1: A convergent sequence has only one limit.

» Asequencéx} IR is boundedif there exists a numbey > o
such thatjz®| < B forall=1,2, ..

» Theorem 5.2: Every convergent sequence is bounded.

» For a sequende,} K anumbeB is called arupper bound
If v, <B forallt=1,2,... .Inthiscase,we §ay boisnded
above

» AnumberB is called arlower boundif z, > B forallt =1,2, ...
In this case, we say,} bsunded below



Sequences and Limits

» Any sequencéz,} IRthat has an upper bound hasast
upper bound(also called theupremum), which is the smallest
numberB that is an upper bound &f.} . Similarly, it has a
greatest lower boundalso callednfimum).

» If Bis the least upper bound of the sequenge Ahers
for all ¢, and for any >0 , there exists a nunkosuch that

r > B —¢€
» If Bis the greatest lower bound{af} , then B far all
and for anye > 0 , there exists a numesuch that:, < B + ¢

» Theorem 5.3: Every monotone bounded sequeniRasn
convergent.



Sequences and Limits

» Given a sequence:™}  and an increasing sequence of natural
numbers{m;} , the sequence
{am)} = Lglm) glma) 1
is called ssubsequencef the sequencéx*}

» Theorem 5.4: Consider a convergent sequégice with
limit z*. Then any subsequenceof)} also converges to

» It turns out that any bounded sequence contains a convergent
subsequencdplzano-Welerstrass Theorem



Sequences and Limits

4

Consider a functiop: " — R  and a paint Rr" . Suppose
that there existg* such that for any convergent seqéehge
with limit z,, we have

limy, oo f(2™)) = £
Then, we use the notation,_.,, f(x) to repregsent
It turns out thaff Is continuousat  if and only if for any
convergent sequené¢e)}  with limjt , we have

limy oo f(z®)) = f(hmm :13<k>> — f(m)

Therefore, using the notation introduced above, the fungtion

IS continuous ak, if and only if
1imw—>wo f(il?) — f(il?oj



Sequences and Limits

» We say that a sequence.} 0k n matrices converges to the
m x n matrnx A iflim,_||A — A =0
» Lemma 5.1: Le#A € " . Thehp, . A" =0 if and only if

the eigenvalues od  satisfyA)| < 1,i=1,...,n

» Lemma 5.2: The series of«»  matrices
I,+A+A%+. .. £ A 4.
converges if and only ifm;,_.. A*=0 . In this case the sum of
the series equals, — A)™!



Sequences and Limits

» A matrix-valued functiom : R — R is continuous at a point
€ € RV Timye g, A(€) — A(&o)l| = 0
» Lemma5.3: LeA: " — R be@aRn matrix-valued

function that is continuous gf . Af(¢,)~!  exists, thgn!
exists forg sufficiently close tg, — ang.)-! IS continuous

at ¢, .



Differentiability

4

Differential calculus is based on the idea of approximating an
arbitrary function by aaffine function.

A function4: r» — r™ 18ffine If there exists dnear
function £ : R* — R™ and a vectogy € R such that
Alx) = L(z) +y

for everyz ¢ r”
Consider a functiof : R* - R  and a pairt R” . We wish
to find an affine functiom that approximates near the pgint
First, it is natural to impose the condition

A(xo) = f (o, 1

z=f(xg)+f'(x0) (x-x)
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Alxo) = f (@0,
Differentiability

» Becaused(z) =L(x)+y , we obtgia f(x)) — L(x)
» By the linearity ofz

L(x)+y=L(x)— L(xy) + flxg) = L(T — x0) + f(0)
» Hence, we may write

Alx) = L(x — o) + f(xo)
» Next, we require thati(z) approaches) fasterdhan

approaches, ;thatis
: (@) - A)|

Hw—wM
» The conditions ensure that approximates sfear Inthe

sense that the approximation error is “small” compared with
the distance of the point from

hmw—>wo,weﬂ

f(xo)
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|f(z) — Al=)|

|z — x|

Alx) = L(x —x0) + f(®0)  limg_.py zen
Differentiability

» In summary, a functiop: Q@ — R, Q c R, IS said to be
differentiableat «, ¢ © if there is an affine function that
approximateg neay, ;thatis, there exists a linear function
£ - R" — Rr™ such that

| f(x) — (Ll —x0) + flzo))

|z — x|

= (

= (]

hmw—mo,mEQ

» The linear functiom Is determined uniquelyfby and andis
called thederivativeof f atz, .

» The function is said to baéifferentiableon if f Is
differentiable at every point of its domain »-.

-

z=f{(xg)+'(xg) (x-%0)
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Differentiability

» In R, an affine function has the foram + 5 , With € R
Hence, a real-valued functiginz)  of a real variable thatis
differentiable atz, can be approximated by a function

Alx) =azx +t
» Because€ (zy) = A(xy) = azg + b , We obtain
A(r) =ar+b=alx — x¢) + f(xg)

» The linear part ofd(z> , denoted by earlier, isdqust . The
norm of a real number is its absolute value, so by the definition

of differentiability
|f(z) — (alz — 20) + flzo))| _

|$ —$0|

limg g,

f(@) = flao)]

\$—$0|

) limm_mo

13



f (@) — fl20)] _

limg, g, pe——— A(x) =ax +b=alx — xy) + f(x0)
Differentiability
» The number. Is commonly denotéd:) and is called the

derivative of f at,

» The affine function4 is therefore given by
A(x) = f(zo) + f'(z0)(z — 0)

» The affine function is tangenttp &t

NE:

14



| f(®) — (L(x —z0) + fl20))|

= (]
| — 0]

hmIEHIBO,QIEQ

The Derivative Matrix

» Any linear transformation frorR" to R™, and in particular the
derivativez off: r* — R™ , can be represented by an
matrix.

» To find the matrix, of the derivative , we use the natural
basis{e;, e,,...,e,} fd". Consider the vectors
x;i=xy+te;,j =12 .,n
By the definition of the derivative, we have

f(z;) — (tLe; + f(xo))

hmt—>0

-0 j=1,2,..n

t Y] ) Y
This means that
N ' L(x; — x0) :
limy fl;) = (@) = Le, = dwo +te; —xy
t 1 = E(tej) :
: = L(tej) I
| =tLe |
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The Derivative Matrix

» But Le, Is thgth column of the matrix,. . The vecter

hmt—>0

f(x;) — f(x)

n = Le,

differs

from z, only in thgth coordinate, and in that coordinate the
difference is just the numberTherefore, the left side is the
partial derivatived/ ()
» Because vector limits are computed by taking the limit of each
coordinate function, it follows that if

then 7L () =

16

fi(x)
: (fi:R”%R,izl,...,m)
()
and the magix has the form
8 (@) - Gl (m)|
(@o) - @) = |
Sle(m) - G(@o)]




The Derivative Matrix

» The matrixy Is called thdacobian matrix or derivative
matrix, of f atz, , and is denoted (x,)

» For convenience, we often referng (z) simply as the
derivative off ate, .

e (@o) - G (o)

8r1 al‘n

o () ()] = | |
{83:1( ) &En( )] af”b(aZo) 3fm<w0)

| Oy

oz,
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. . . A(x) = f(xo) + f'(20)(z — x0)
The Derivative Matrix

» Theorem 5.5: If a functioft : " — R™ Is differentiable,at |,
then the derivative of af, is determined uniquely and is
represented by an x»  derivative mapiK ) . The best
affine approximation of nea#, Is then given by

A(x) = f(xo) + D f(zo)(x — @0,
In the sense that
flz) = Alx) +r(z)
and limg_. ||7(x)]|/||x — xo|| = O
The columns of the derivative matrixf(xz,)  are vector partial
derivatives. The vectdf(z,) is atangentvectayat to the
curve f obtained by vérying only tfte coordinate of .
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The Derivative Matrix
» If f:R"— R Is differentiable, then the functiou defined by

pins
vi)=| : | =Df(x)

oL (x)
| Oy _

Is called thegradientof f.

» Givenf: " — R , 7/ s differentiable, we say that twise
differentiable and we write the derivative off as

TR

Ox? 0x20x] 01,011
T

D2f — | 0z102y 022 0x,0x9
I R

| 0210, O0z20x, 8_:1:,% _

afng represents taking the partial derivative with respeet to

1E1;irst', then with respect tg




The Derivative Matrix

» The matrixp?f(z) is called thdessian matrixof f atx , and
IS often also denoted'(x)

» Afunctionf . — R" Qc R* ,Is said todzmtinuously
differentiableon( if it is differentiable (om ), andf:Q — R™
IS continuous; that is, the componentg of have continuous
partial derivatives. In this case, we wrjte ¢! . If the
components of have continuous partial derivatives of grder
we write £ e ¢ .

» The Hessian matrix of a functigh r* = R zat IS symmetric
If 7 Is twice continuously differentiable at . This is a well-
known result from calculus callé€clairaut’s theoremor
Schwarz’s theorem
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Cd N fla—fd | P [ e
| —<—) - > = oy
Example | de‘g/ ¢ | i ol

» Consider the function(z) = {5’715”2(93% —x3)/(2f +23) ifx#
0 if x =
Compute its Hessian at the pomt [0, 0]”

» Startwith  0°f (af>
5’x% B 8:1:1 8:1:1

8f< - {scg(a:‘ll—x2+4x1x2)/(:c%+x§)2 if £ #0

0x1 0 ifx =20
Note that
Of i iy Pf o _
5y (0,0 =0 5210) =0
af T of B
8561 ([0 x2] ) - 6:132331 :

21
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Example

» We next compute

Of 0 ((‘9]‘)
055% B 8:11:2 8:62
of O () ri(x} — a5 — 4x2x3) /(23 + 23)? ifx #£0
019 0 fx=0
of B of
(=0 o) =
af T o 8f vy
sl 0 =21 5, 0) =1
» Therefore, the Hessian evaluated at the p@iato, 0" IS

PO |1
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Differentiation Rules 1a?/\?) 9Vl

» Thechain rule for differentiating the compositiofif(t)) , of a
functionf: R — r* and a functign " — R

» Theorem 5.6: Lety;: D —~ R be differentiable on an open
setp c r* , and lgt: (a,b) - D be differentiabla,on
Then, the composite function: (a,b) — R given(by= ¢(f(t))
IS differentiable ona, ) , and T
1

W(t) = Dg(f(t))Df(t) =g(f(t)" | :
filt).

23



Differentiation Rules g9 =19t Ig

4

Product rule Letf: " — R™ and:R"— R"™  betwo
differentiable functions. Define the functian r*» — R by
hiz) = f(x)'g(x). Thenh Is also differentiable and

Dh(z) = f(z)' Dg(z) + g(z)' Df ()

Some useful formulas: Let € R apd R™ . the
derivative with respect to

D(y"Az)=y" A

D(x"Az) =xT(A+ A", ifm=n
If ye R, them(ylz) =y’
If Q Is a symmetric matrix, themz"Qz) = 227Q . In particular,
D(x'z) =2z
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Level Sets and Gradients

» Thelevel sepf a functionf: r" — R atlevel Is the set of
pointsS ={z: f(z)=c} .FPFR*> - R , we are usually
Interested irs  when itis a curve. [FOR? — R , thessets
most often considered are surfaces.

» Example: Consider(x) = 100(zy — 22)? + (1 — 21)%, @ = [21, 22]"

It Is calledRosenbrock’s function

Level sets at levels 0.7, 7, 70, 200, and 700

1500

1000+

500+

X -1 -2




Level Sets and Gradients

» Apointz, Isonthelevelsst atlevel meansthat =c
Suppose that there is a curve  lyingin  and parameterized by

a continuously differentiable functign: R — " . Suppose also
thatg(t)) =z, anfg(ty) =v #0 , SO that Is a tangent vector

» Applying the chain rule to the function) = f(g(t))
W (to) = D f(g(to))Dg(to) = D f(xo)v
Since” lies ol , we have
h(t) = flg(t)) = c
That is,, IS constant. Thus,
W(tg) = 0= Df(xo)v = f(zo) v

Vf(xO)

26




Level Sets and Gradients

» Theorem 5.7: The vectarf(z,) Is orthogonal to the tangent
vector to an arbitrary smooth curve passing thragjgh  on the
level set determined byx) = f(x)

» Itis natural to say thatf(xzo) aghogonalor normal to the
level sets corresponding4Q , and to take as the tangent
plane (or line) t& at, the setof all poiats satisfying

Vf(xo) (x —x0) =0, if 7 f(xg) #0 22

f(xq,X0)=C
Xo2 ,
\ A
27
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Level Sets and Gradients

» v f(x) IS the direction ofmaximum rate of increasef f atz,

» The direction of maximum rate of increase of a real-valued
differentiable function at a point is orthogonal to the level set
of the function through that point.

» An example about: R? > R

The curve on the surface running from
bottom to top has the property that its
projection onto thex, x,)-plane is
always orthogonal to the level curves
and is called @ath of steepest ascent x

28




Level Sets and Gradients

» Thegraphof f:R"— R Isthe sel”, f(x)" : « < R"} c R™!
The notion of the gradient of a function has an alternative

useful interpretation in terms of the tangent hyperplane to its
graph.

» Let zye R* andy = f(xzo) . The pojaf, =" € R"! IS a point
on the graph of . If is differentiable@at , then the graph
admits a nonvertical tangent hyperplanesat (27, » ]T . The

hyperplane througlg is the set of all poipts..., ,, 2|” € R"*!
satisfying the equation

ur(x1 — To1) + -+ + Uy — Ton) +v(z — 29) =0
Wher<the vectofu,, ..., u,,v| € R"*' Is normal to the hyperplane.

<(u1, ceey Up, U>7 (T1 — o1, s Tn — Ton, 2 — Zo)) Ly = ($01a P l“on)
normal a vector on the hyperplane
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Level Sets and Gradienis,

» Assuming that this hyperplane is nonvertical (that ig ), let

1—x01)+---+un(xn—x0n)+v(z—20):O

di = ——

v
Thus, we can rewrite the hyperplane equation as

Z = d1<$1 — 3301) R dn@jn — CL’on> + 2

» We can think of the right side as a functionr” — R . Observe
that for the hyperplane to be tangent to the graph of , the
functionsf and must have the same partial derivatives at the
point x, . Hence, if is differential @t , its tangent

hyperplane can be written in terms of its gradient, as given by
the equation

v— 2= Df(@)(@ — o) = (@ —x0)" 7 f(@0) e ,

30



Taylor Series

» Theorem 5.8aylor's Theorem Assume that a functiomn: R — R
IS m times continuously differentiable (ifec ¢ ) on an
interval [a,b] . Denoté. =b —a
Then,

F(b) = fla) + 4D (a) + 5O (a) + -+ 2y /" (a) + Ry,
(called Taylor’s formula) Where U is thtd derivative of f
and

R — hm(%__el);wlf(m)m +6h) = %f(m)@z +60'h) 0.0 ¢ (O, 1)
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Taylor Series

» An important property of Taylor's theorem arises from the
forms of the remainder,,

» We introduce therder symbolso ando .

» Let ¢ be a real-valued function defined in some neighborhood
of oc R* ,withg(z) #0 k40 .LEtQ—R" be defined in a
domain o c r* thatincludes . Then, we write

1. f(x) = O(g(x)) tomean that the trrdt| f(x)||/|g(x) Is
bounded neay : thatis, these exist numbBérs 0 and > (0 such

thatif lzf| <é @ e  thapf(z)|/lg(x)] <K of f(z)| < Kg(z)
2. f(x) =o0(g(x)) tomean that

| f ()]

limgozco =77 =0

lg(x)
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Taylor Series

» The symbolO(g(z)) [read “big-oh” gfx) ] is used to represent
a function that is bounded by a scaled version of Ina
neighborhood ofo .

» Examples:
r=0(x

/

3 5
202 + 324 - O(:c )

cosz = O(1)

sine = O(x)
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Taylor Series

» On the other handy(g(x))  [read “little-oh” gfr) ] represents
a function that goes to zero “faster” tham) In the sense that

limg—ozcollo(g(@))]l/]g(x)| = 0

» Examples:

2 \

r° = o(x)

[2:62953334] = olz)
3 = o(2?)
o(1)
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Taylor Series

» Note that if f(z) = o(g(z)) , thefiz) = O(g(z)) (but the
converse iIs not necessarlly true). Alsofifc) = O(||x|?) , then
f(x) = of||lz]|’™) for any ¢ > 0

» Suppose thay € ¢ . Recall that the remainder term in Taylor’s
theorem has the form
Ry =" fm(a+0n)  0€(0,1)
Substituting this into Taylor’s formula, we get
f(b) = fla)+ 5 fD(a) + L fPa) + - + A F D (a) + 2™ (0 + 0h)

By the continuity off™ , we havg™ (a + 6h) — f™(a)  h asd
that is, f"(a+60h) = f(a)+0o(1) . Therefore,

Ry = f0m)(a + Oh) = 12 £ (g) + o(h™) h™o(1) = o(h™)
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Taylor Series

» We may then write Taylor’s formula as
f(b) = fla) + 5 fD(a) + & fP(a) + -+ + A D (a) + L3 £ (a) + o(h™)

m!

» If, in addition, we assume thatc ¢"*! |, we may replace the
term o(h™ above by (pmt)

£(b) = fla) + 2O (a) + 2 f@(a) + -+ L fn=D(a) 4 L2 £ () 4 O(h™+1)
1 p) (m—1)

m)
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Taylor Series

» Theorem 5.Mean value theoremlf a functionf : R* — R™ IS
differentiable on an open setc r" , then for any pair of
pointsz,y € © , there exists a matMx  such that

flx)— fly) = M(x—y)

» The mean value theorem follows from Taylor’s theorem (for
the case wherex =1 ) applied to each componeftaf . isa
matrix whose rows are the rows off evaluated at points that
lie one the line segment joining  apd

A
S0 Hcf(X) fa,b]® A gy asr
PlAZHBEPN &3 - 8Cco @

fb)—f(a
f(c) = (})}_a( )
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